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Triple C —H/N—H Activation by O, for Molecular and the reaction took only a few seconds (eq 1). The structure
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UMR CNRS R5802 knew that single €H activation in F&p(CMeg) only
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33405 Talence Cedex, France wijth 0.25 equiv of Q instantaneously gave a red compl@x
. B o ) (the usual color of cyclohexadienyl Feomplexes with an
Reg|ospecmc C-H activation is one of the most challenglng exocyclic double bond)3 is not thermally stable and rapidly
problems in molecular chemistry. Fundamental recent discover-tyrned green at 26C, giving4. Addition of 0.25 equiv of @
ies have led to considerable advances in this fiefdne of the to 4 instantaneous|y gave the red color again, forn‘ﬂng']is
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activation system to attach these redox catalysts onto star Fe! v e pentane SFe
molecules and dendrimetsWe report here an unexpected but r = EX) 32& , 0 % .
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The starting 18-electron compldx was synthesized by the
reaction of F&(CsH4COH)(CeMes)PRs® with SOCh (reflux),
then with propylamine (620 °C), and finally with BH; in THF
(reflux) in 65% overall yield. Single-electron reduction to the
19-electron isostructural compleixwas achieved by reaction
with Na/Hg in THF in 20°C.#42 The ESR spectrum df shows
the characteristic 3-line pattern for the Jafireller active Fé
state with rhombic distortioff g = 1.978,g, = 2.068, andy,
= 1.850. Evidence that the structure is unchanged at this point
was obtained by quantitative ferricinium oxidation backito
Much to our surprise, the reaction of the forest-green complex
1 with O, in pentane at 20C consumed 0.75 equiv ofand
gave the red compleXresulting from triple H-atom abstraction.
On a preparative scale, excesswias bubbled into the solution,

complexes was indicated by their ESR spectra showing, as for
1, the classic rhombic distortiony {alues are 2.002, 2.074, and
1.858 for4 and 2.009, 2.074, and 1.904 f@y. Since the G-H
activation by Q proceeds by electron transfer from' ke O,
followed by deprotonation of the cationic organd.fetermedi-

ate by superoxide radical anion in the cagen pair? we have
also achieved the first €H activation giving3 starting from
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twice with 0.25 equiv of @ exactly as above to give. The
color change from re8 to greerd occurred even at10°C in
pentane upon transfer by cannula and upon shaking the Schlenk
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give the hexametallic comple®, soluble in basic aqueous
medium, according to Scheme 2 (40% overall yield). Complex
9 gave a single reversible wave atl.80 V vs SCE in cyclic
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In conclusion, although true 19-electron complexes are
scarcé their chemistry illustrated here is rich and promising
for further applications of the concept of electron reservoirs in
redox catalysis. It should be underlined that very few catal§sts
or redox catalyséshave so far been attached to dendrimers,
most probably due to the difficulty of branching. In the present
case, the powerful triple €H activation found under ambient
conditions provided heterobifunctionalization allowing for both
branching and solubilization in waf@mwithout loss of catalytic
activity. The extremely mild conditions found here for the
oxidation of the amine to the imine by,@ontrast with the
well-documented conditions required which are usually harsh
or difficult to control11.12
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